Ghost-peak suppression in ultrafast two-dimensional NMR spectroscopy.

نویسندگان

  • Yoav Shrot
  • Lucio Frydman
چکیده

Two-dimensional (2D) spectroscopy is central to many contemporary applications of NMR. Recently, we have introduced a new approach whereby 2D NMR spectra can be collected within a single scan. This methodology employs a magnetic field gradient in order to spatially encode the time evolution occurring along the indirect dimension. The discrete nature of the t1 incrementation and its one-to-one correspondence with the spatial encoding, may lead to a number of artifacts. Most notable among these is a periodicity of the spectral peaks that are observed along the indirect axes. The appearance of such 'ghost-peaks', which may sometime coincide with genuine cross-peaks, could hamper a proper interpretation of the spectra. This contribution reviews the origin of such multiple resonances, and proposes a procedure for their elimination based on the acquisition of a small number of complementary scans. Such complementary scans can be simultaneously employed for the sake of phase-cycling out other unwanted signals, and improve the overall indirect-domain spectral resolution. Brief mathematical descriptions of the ghost-peak generation and ghost-peak suppression mechanisms are described, followed by experimental tests on a number of samples using various pulse sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional infrared spectroscopy of photoswitchable peptides.

We present a detailed discussion of the complimentary fields of the application of two-dimensional infrared (2D-IR) spectroscopy in comparison with two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Transient 2D-IR (T2D-IR) spectroscopy of nonequilibrium ensembles is probably one of the most promising strengths of 2D-IR spectroscopy, as the possibilities of 2D-NMR spectroscopy ar...

متن کامل

Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions.

A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is found t...

متن کامل

Spatially resolved multidimensional NMR spectroscopy within a single scan.

We have recently demonstrated that the spatial encoding of internal nuclear magnetic resonance (NMR) spin interactions can be exploited to collect multidimensional NMR spectra within a single scan. Such experiments rely on an inhomogeneous spatial excitation of the spins throughout the sample, and lead to indirect-domain peaks via a constructive interference among the spatially resolved spin-pa...

متن کامل

Sensitive absorptive refocused scalar correlation NMR spectroscopy in solids.

A new two-dimensional NMR experiment is described which is suitable for obtaining magic angle spinning (MAS) scalar correlation spectra in solids. The new experiment has several advantages, including increased cross peak intensities, coupled with good suppression of the diagonal. Its utility is demonstrated via assignments of the carbon-13 MAS spectra of progesterone at natural abundance and of...

متن کامل

Single-beam spectrally controlled two-dimensional Raman spectroscopy

Vibrational modes are often localized in certain regions of a molecule, and so the coupling between these modes is sensitive to the molecular structure. Two-dimensional vibrational spectroscopy can probe the strength of this coupling in a manner analogous to two-dimensional NMR spectroscopy, but on ultrafast timescales. Here, we demonstrate how twodimensional Raman spectroscopy, based on fifth-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 164 2  شماره 

صفحات  -

تاریخ انتشار 2003